J an 2 00 6 On Chern - Heinz inequalities
نویسنده
چکیده
We extend the Chern-Heinz inequalities to graphs of C 2-functions defined on open subsets of Riemannian manifolds. We generalize results about foliations of 3-dimensional Riemannian manifolds by constant mean curvature surfaces due to Barbosa-Kenmotsu-Oshikiri [3], Barbosa-Gomes-Silveira [2].
منابع مشابه
Foliations and Chern-Heinz inequalities
We extend the Chern-Heinz inequalities about mean curvature and scalar curvature of graphs of C2-functions to leaves of transversally oriented codimension one C2-foliations of Riemannian manifolds. That extends partially Salavessa’s work on mean curvature of graphs and generalize results of Barbosa-Kenmotsu-Oshikiri [3] and Barbosa-GomesSilveira [2] about foliations of 3-dimensional Riemannian ...
متن کامل4 J an 2 00 6 Intersection numbers with Witten ’ s top Chern class Sergei Shadrin
Witten’s top Chern class is a particular cohomology class on the moduli space of Riemann surfaces endowed with r-spin structures. It plays a key role in Witten’s conjecture relating to the intersection theory on these moduli spaces. Our first goal is to compute the integral of Witten’s class over the so-called double ramification cycles in genus 1. We obtain a simple closed formula for these in...
متن کاملMiyaoka-yau Type Inequalities for Kähler-einstein Manifolds
We investigate Chern number inequalities on Kähler-Einstein manifolds and their relation to uniformization. For Kähler-Einstein manifolds with c1 > 0, we prove certain Chern number inequalities in the toric case. For Kähler-Einstein manifolds with c1 < 0, we propose a series of Chern number inequalities, interpolating Yau’s and Miyaoka’s inequalities.
متن کاملar X iv : m at h - ph / 0 40 80 51 v 1 2 6 A ug 2 00 4 Chern - Simons Integral as a Surface Term ∗
Under certain circumstances the Chern-Simons 3-form is exact (or is a sum of exact forms). Its volume integral can be written as a surface term, in a " holographic " representation.
متن کامل6 v 3 1 9 M ay 2 00 1 Renormalization Ambiguities in Chern - Simons Theory
We introduce a new family of gauge invariant regularizations of Chern-Simons theories which generate one-loop renormalizations of the coupling constant of the form k → k+2sc v where s can take any arbitrary integer value. In the particular case s = 0 we get an explicit example of a gauge invariant regularization which does not generate radiative corrections to the bare coupling constant. This a...
متن کامل